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ABSTRACT

The agricultural industry worldwide faces challenges in the struggle against plant diseases. 
In efforts to increase agricultural intensities, the dependency on agrochemicals for crop 
protection has become significantly high. Moreover, the increasing use of agrochemical-
based products has resulted in multidrug-resistant pathogens and environmental pollution. 
This paper reviews the biocontrol capacity of plant growth-promoting microorganisms 
(PGPMs) originating from plants towards plant pathogens. The current trend in discovering 
new compounds has shown antimicrobial activity gaining immense interest due to its 
vast potential. On a related note, PGPMs are an aspect of that research interest that can 
be further explored as antimicrobial producers. In this work, the types of biocontrol 
mechanisms pertaining to PGPMs as well as their roles in biocontrol activity were covered. 
A biocontrol approach exploits disease-suppressive microorganisms to improve plant 
health by controlling related pathogens. The understanding of these microorganisms and 

mechanisms of pathogen antagonismare 
primary factors in ensuring improvement 
for future applications. Inevitably, there 
is indeed room for rigorous expansion 
with respect to PGPMs in the future of 
agriculture.

Keywords: Antimicrobial producers, biocontrol 

agents, phytopathogen, plant growth-promoting 

microorganism (PGPM), plant pathogen
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INTRODUCTION

Infections caused by microorganisms such 
as bacteria, fungi, and parasites are known to 
be significant problems for humans, animals, 
and plants. The discovery of penicillin 
in 1928 revealed that microorganisms 
may contribute to known existing issues, 
due to the abundant bioactive substances 
produced within their cells (L.-Q. Xu et al., 
2017). Some pathogens have been shown to 
develop antimicrobial-resistant properties, 
leading to increased morbidity, mortality, 
and healthcare costs (Pratiwi et al., 2017). 

In food and agriculture, the use of 
metals, heavy metals, and biocides have 
both direct and indirect impacts on the 
growth of antimicrobial resistance in 
bacteria that can invade the food chain 
(Cheng et al., 2019). As described by 
Horrigan et al. (2002), traditional agriculture, 
includes high-yielding plants, mechanised 
tillage, inorganic fertilisers, and chemical 
pesticides, which have in turn lead to 
problems such as biodiversity loss (Hole 
et al., 2005) and impacts on soil biota and 
related health problems (Aktar et al., 2009). 
In order to boost crop yields in a sustainable 
and environmentally responsible manner, 
most of these current agricultural methods 
that require the use of chemical fertilisers, 
herbicides, fungicides, and insecticides need 
to be re-examined (Glick, 2012). 

This scenario leads to increased 
research focused on the development of 
new antibiotics and bioactive compounds 
in the fight against multidrug-resistant 
microbes (Bérdy, 2005) and biocontrol 
agents against plant diseases (Köhl et al., 

2019). The use of PGPMs as a biological 
control agent in the form of biopesticides 
has been considered one of the best practices 
for the sustainability of agroecosystems 
as they provide solutions to issues such as 
resistance to pests, conventional chemical 
pesticides, and public concern regarding the 
side effects of pesticides on the environment 
and eventually on human health (Mishra et 
al., 2015). A study by Moin et al. (2020) 
showed a suppression of root rotting fungi 
by 55.5% in 2017, and 63.6% in 2018 in 
sunflowers as compared to other treatments, 
including carbendazim, a commercial 
fungicide. Therefore, the use of PGPMs 
in the management of plant diseases has 
emerged as a new future alternative. 

Moreover, there is an abundance of 
possible microorganism sources to attain 
biocontrol for plant growth. PGPMs, 
such as rhizobia, mycorrhizae, and plant 
growth-promoting bacteria, have been 
documented for decades to boost plant 
growth under stressed and non-stressed 
conditions (Naamala & Smith, 2020). 
According to Bérdy (2005), these would 
include endophytes. Prashar et al. (2013) 
and Rekha et al. (2010) also included 
rhizobacteria for this purpose. In brief, 
PGPMs indeed possess the capacity to 
serve as biocontrol agents against plant 
pathogens, and in addition they are effective 
in preserving the soil quality and increasing 
crop yield in a sustainable approach.

Plant Growth-Promoting 
Microorganisms

Plants are perceived as meta-living beings 
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with a particular microbiome and have 
advantageous interactions and associations 
with related microorganisms (Mendes et 
al., 2013). A greater understanding of the 
interactions of a plant with its microbiome 
has improved knowledge of its ability to 
affect its microbiome and vice versa (Jones 
et al., 2019). In natural settings, plants are 
associated with a microbial population in 
healthy tissues (Darma et al., 2016). PGPMs 
are in fact central to microbial communities. 
PGPMs have been associated with several 
types of plants and are commonly found in 
many environments. In general, PGPMs 
can be divided into two main groups: plant 
growth-promoting (rhizo)bacteria (PGPRs 
or PGPBs) and plant growth-promoting 
fungi (PGPFs).

A typical example of plant growth-
promoting bacterium (PGPBs) is the 
beneficial free-living soil bacteria (Agrillo et 
al., 2019). PGPBs are known to potentially 
occupy various plant compartments, 
including the rhizosphere, the endosphere 
(inner plant tissues), and the phyllosphere 
(an aerial portion of plant leaves) (Zhang et 
al., 2019). Rhizobacteria, among a variety 
of other microorganisms, often populate 
the rhizosphere, a small area of soil directly 
affected by the root system. This may 
be due to the abundance of nutrients and 
energy sources produced by different plant 
exudates, such as amino acids and sugars, 
compared to the bulk soil region (Gray & 
Smith, 2005).

According to Cecagno et al. (2015), 
the genus Azospirillum, a known PGPR, is 
comprised of free-living, nitrogen-fixing 

bacteria, which can colonise the root surface 
or the intercellular spaces of the host plant 
roots by adhesion. The advantages of 
Azospirillum inoculation for plants were 
mainly due to its ability to fix atmospheric 
nitrogen (Fukami et al., 2018) and the ability 
to secrete phytohormones such as auxins, 
gibberellins, cytokinins, and nitric oxide, 
which promote plant growth (Fibach-Paldi 
et al., 2011).

The definition of PGPF is equivalent 
to that of PGPR, according to Murali and 
Amruthesh (2015), except that the species 
are fungi (including true fungi as well as 
oomycetes) rather than bacteria. PGPFs 
have the ability to provide plants with many 
benefits in terms of growth and defence 
against pests and pathogens (Hossain et 
al., 2014). Larran et al. (2016) described a 
Fusarium sp. that was isolated from wheat 
that showed a significant reduction in spore 
germination of Drechsleratritici-repentis, 
which causes tan spot of wheat, to be 
suppressed by 52% compared to the control. 
Another study by Fiume and Fiume (2008) 
identified the inhibition of Pyrenochaeta 
lycopersici, which causes corky root in 
tomato, by Trichoderma viride 18/17 SS, 
which increased up to 81.2% in dual culture. 
In addition, the study also proved that all 
tomato plants treated with T. viride showed 
significant differences from untreated 
tomato plants with regards to corky root 
symptoms during growth in a greenhouse 
in which the McKinney index rose from 
3.3 to 23.3%. 

In addition, numerous endophytic 
microorganisms have also been classified 
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as PGPMs and are defined as part of the 
plant microbiota (Zhang et al., 2019). 
These microorganisms are classified as 
non-pathogenic bacteria or fungi that live 
in healthy living tissues of plants but do 
not inflict any damage to the plants (Bacon 
& White, 2000). As described by W. Xu et 
al. (2019), these endophytes are isolated 
from various plant species, and some of 
them may have the potential to be utilised 
as biocontrol agents against plant diseases 
such as white fruit disease which usually 
threatens mulberry fruit productivity. 
Moreover, endophytes have also been 
shown to stimulate the growth of mulberry 
seedlings. The results showed that the 
highest promotion potential was caused by 
Bacillus sp. CW16-5, which increased shoot 
length and root fresh weight by 83.37% and 
217.70%, respectively (W. Xu et al., 2019).

Previous reports have shown that 
endophytes can aid germinating seeds 
and improve plant growth through several 
approaches such as nitrogen fixation, 
phosphate solubilisation, siderophore 
production, and bioactive enzyme release 
(Agrillo et al., 2019; Liotti et al., 2018; Wu et 
al., 2020; W. Xu et al., 2019). Furthermore, 
W. Xu et al. (2019) mentioned another 
promising source of natural biological 
control antagonists (BCAs). Endophytic 
bacteria are considered natural BCAs due 
to their production of possible bioactive 
substances. In addition, compared to soil-
derived fungi or other settings, endophytic 
fungi have a greater affinity mostly with the 
host and can more easily infect and flourish 
in plants, thereby offering better resistance 

and desirable effects on plants (Backman & 
Sikora, 2008).

Biocontrol Mechanism of PGPMs

Biocontrol of plant diseases can be described 
as suppressing plant-pathogen populations 
using living organisms (Heimpel & Mills, 
2017). Biocontrol agents use different 
mechanisms to shield plants from pathogens 
(Köhl et al., 2019), which able to reduce 
the use of agrochemicals in agricultural 
production (Naamala & Smith, 2020). As 
described by Sehrawat and Sindhu (2019), 
many rhizobacteria produce an antagonistic 
effect by using diverse mechanisms of 
biocontrol including creating a competitive 
environment for nutrient uptake against 
the phytopathogenic microorganisms, the 
root colonisation ability and producing a 
secondary metabolite as protective agents. 
In addition, the rhizobacteria also help 
in regulating the production of virulence 
factor using quorum sensing and inducing 
a physical defence mechanism of the host 
such as induced systemic resistance (ISR) 
and systemic acquired resistance (SAR) as 
a mechanism of biocontrol (Sehrawat & 
Sindhu, 2019).

Beneduzi et al. (2012) identified PGPBs 
that indirectly suppress the activity of 
phytopathogens based on competition for 
living capacity (space and nutrients) or the 
development of antibacterial metabolites 
(Beneduzi et al., 2012). This metabolite 
is responsible for the antagonistic action 
of certain species against phytopathogens 
such as Alternaria solani (Attia et al., 2020), 
Aspergillus flavus (Chen et al., 2019), and 
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Fusarium solani (Bahroun et al., 2018). 
Several studies have documented the use 
of lytic enzymes, such as chitinases and 
proteases, in addition to antimicrobial 
peptides or proteins, polyketides, phenolic 
compounds, and biosurfactants (Abdalla et 
al., 2020; Agrillo et al., 2019; Chen et al., 
2019; Wu et al., 2020; W. Xu et al., 2019; 
Zloch et al., 2016), in the development of 
antimicrobial metabolites.

PGPBs may also implement other 
biocontrol mechanisms to directly enhance 
plant development, such as biofilm 
production (Naik et al., 2015), nutrient 
uptake, nitrogen fixation (Carvalho et al., 
2014), mineral phosphate solubilisation 
(Wang et al., 2017), phytohormones, and 
siderophore release (Gamalero & Glick, 
2015). A study by Chen et al. (2019), also 
found that the endophyte Bacillus velezensis 
LDO2 produces specific metabolites such 
as fengycin, surfactin, bacilysin, bacillaene, 
and macrolactin, which constitute the basis 
for pathogen inhibition. Other strategies 
involve altering the cell  membrane 
permeability of the pathogen, triggering 
cell lysis, and producing siderophores that 
can minimise pathogen growth by reducing 
iron accessibility (Zloch et al., 2016).

There is also a non-pathogenic soil 
Bacillus spp. with the ability to form 
endospores. Bacillus spp. have been found to 
colonise root surfaces, whereby they enhance 
plant growth by triggering fungal mycelia 
lysis (Turner & Backman, 1991). This strain 
is advantageous as it can withstand intense 
pH, temperature, and osmotic conditions 
(Ashwini & Srividya, 2013). Bacillus spp. 

are also considered safe biological agents, 
leading to their higher potential of use, due 
to various actions, including antibiosis, 
siderophore production, cell wall degrading 
enzymes, and lipopeptide producers (Islam 
et al., 2012).

Generally,  PGPMs can promote 
plant growth via both direct and indirect 
mechanisms. Direct mechanisms are 
characterised by employing the bacterial 
traits that directly promote plant growth, 
while indirect mechanisms refer to bacterial 
traits that prevent one or more plant 
pathogenic organisms from functioning 
(Olanrewaju et al., 2017). By using either 
one or more of these mechanisms, PGPMs 
can influence plant growth and development. 
In the remainder of this review, the 
mechanisms of action of biocontrol agents 
and identify some promising examples of 
these PGPMs in controlling plant disease 
would be dicussed. Figure 1 provides 
application of PGPMs in biocontrol activity 
and their mode of action. 

Antimicrobial Secondary Metabolites 
as Antibiosis Agents. Compant et al. 
(2005) described an essential mechanism 
in biological control as the production 
of antimicrobial secondary metabolites. 
Pathogens tend to interact with microbial 
biological control agents via antibiosis or 
hyperparasitism to assure crop yields (Köhl 
et al., 2019). This can be seen in the number 
of beneficial rhizobacteria capable of 
secreting antibiotics and other compounds 
that are antagonistic to plant pathogens. 
Agrobacterium, Bacillus, Burkholderia, 
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Pseudomonas, and Streptomyces are effective 
antagonists against soil-borne pathogens 
(Barea et al., 2005; Montealegre et al., 2003; 
Prapagdee et al., 2008). These have been 
shown to be broad-spectrum antimicrobial 
producers against Aeromonas hydrophila, 
Escherichia coli, and Staphylococcus aureus 
(Vachee et al., 1997), Bacillus subtilis, 
Candida albicans, and Proteus vulgaris 
(Trujillo et al., 2007). This remarkable 
feature was further highlighted by Rekha 
et al. (2010) such that Pseudomonas spp. 
are also pertinent as root dips for biological 
control of soil-borne plant pathogens, seed 
inoculants, and antibacterial agents.

Essentially, there is a significant 
corre la t ion  between ant imicrobia l 
development and disease inhibition. For 

instance, Pseudomonas spp. can yield 
antibiotic 2,4-diacetylphloroglucinol (2,4-
DAPG), which regulates and reduces 
Gaeumanomyces graminis var. ritici 
infection in wheat as described by de 
Souza et al. (2003). Moreover, in the field 
trials by Weller (2007), a 60% suppression 
of pathogen infection was documented 
from the bacterization of wheat seed with 
antibiotic phenazine-1-carboxylic acid 
(PCA) activity by Pseudomonas fluorescens 
strains 2-79. Most Bacillus spp., as well 
as many other pathogenic fungi such as 
Alternaria solani, Aspergillus flavus, 
Botryosphaeria ribis, Colletotrichum 
gloeosporioides, Fusarium oxysporum, 
Helminthosporium maydis, and Phomopsis 
gossypii synthesise antibiotics, namely 

Application of PGPM in biocontrol 
activity

Antibiosis agent

Antimicrobial secondary 
metabolites

Biocontrol mechanisms

Antagonist agent

Siderophores

Co-repressor plant 
pathogen

Enzymes

Plant growth-promoting (rhizo)bacteria 
(PGPR or PGPB)

Plant growth-promoting Fungi 
(PGPF)

Figure 1. Application of PGPMs in biocontrol activity and their mode of action
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polymyxin, circulin, and colistin, which 
are active against gram-positive and gram-
negative bacteria (Maksimov et al., 2011). 
Meanwhile, Cawoy et al. (2014) reported 
that the metabolites secreted by the Bacillus 
genus resulted in an antagonism effect 
responsible for the disruption of the fungal 
membrane, resulting in mycelium, conidia, 
or zoospores for oomycete pathogens. 
These metabolites are extensively used as 
biocontrol agents for their antibacterial and 
antifungal properties, particularly surfactin, 
iturin, plipastatin, and fengycin (Harwood 
et al., 2018).

In addition, endophytes are also 
capable of producing a wide variety of 
biologically active secondary metabolites. 
For example, Vaz et al. (2009) reported 
endophytic fungi isolated from a tropical 
orchid extract have shown to demonstrate 
the strongest antimicrobial activities against 
the pathogenic yeasts and may be considered 
to produce bioactive natural products. 
J. C. Lee et al. (1995) further added 
that hydroxypestalopyrone, pestaloside, 
pestalopyrone, and pyrone are some 
examples of antifungal compounds produced 
by isolated endophytic Pestalotiopsis 
microspora from Torreya taxifolia. From the 
Sepik River region in Papua New Guinea, 
isolated endophytic Pestalotiopsis jester 
have been reported to produce antifungal 
jesterone and hydroxy-jesterone that 
counter multiple phytopathogenic fungi 
(Li & Strobel, 2001). Other work by W. 
Xu et al. (2019) also mentioned broad-
spectrum antagonism on phytopathogens 
demonstrated by four strains of Pantoea 

spp. (CA15-30, CA15-43, CA15-44, and 
XA15-46), one strain of Pseudomonas spp. 
(XA15-33), and 26 isolates of Bacillus spp. 
This activity can easily be associated with 
antibiotic biosynthesis.

Siderophore Production as Antagonist 
Agents. A limiting factor in iron availability 
for microbial growth is due to the low 
solubility of Fe3+ ions, yet it is an essential 
consideration for disease suppression (Köhl 
et al., 2019). Microorganisms capable 
of producing high levels of siderophores 
with high iron affinity may be selected for 
biological control against phytopathogens. 
By limiting the level of iron that is usable 
for a pathogen, siderophore-producing 
microbes can prevent or minimise pathogen 
proliferation (Shen et al., 2013), causing 
them to lose their ability to function as 
pathogens (Olanrewaju et al., 2017).

In terms of site competition, siderophores 
are low molecular weight ferric ion specific 
chelating agents that can be differentiated 
into three main categories, hydroxamates, 
catecholates, and carboxylates. As described 
by Pahari et al. (2017), hydroxymate type 
of siderophore is mostly produced by 
the bacteria and fungi. The catecholate 
siderophore, produced by the bacteria 
and carboxylate siderophore produced by 
bacteria like Rhizobium sp., Staphylococcus 
sp. and fungi like Mucorales sp. According 
to Battu and Reddy (2009), several strains 
from the Pseudomonas fluorescens putida 
group can release siderophores that are 
beneficial for plant growth and biocontrol. 
This may be due to fungal inhibition 
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within the rhizospheres of several crops. 
Furthermore, several fungi, such as 
Trichoderma asperellum, also produced 
iron-binding siderophores to control 
Fusarium wilt (Segarra et al., 2010). Ahmad 
et al. (2008) stipulated another noteworthy 
advantage, aside from acquiring iron, is that 
siderophore-producing endophytic bacteria 
can also inhibit phytopathogenic growth by 
depleting iron. In another study, Calvente 
et al. (2001) proved the growth inhibition 
of phytopathogenic moulds by bacterial 
siderophores containing spent medium 
and associated the antifungal activity with 
siderophore concentration.

Enzymes as Co-repressor of Plant 
Pathogens. In some cases, excretion of cell 
wall degrading enzymes (CWDEs) supports 
the biocontrol of secondary metabolites. 
Cell wall degradation can typically be 
associated with a range of chitinases, β-1,3-
glucanases, and proteases. The biocontrol 
strains of PGPRs that secrete CWDEs have a 
strong inhibitory effect on the hyphal growth 
of fungal pathogens. Enzymes, namely, 
chitinase and β-1,3-glucanase, degrade 
chitin, which is the major component of the 
fungal cell wall (Labuschagne et al., 2010). 
Nevertheless, for hyperparasites such as 
oomycota, pathogen cell walls are penetrated 
by cellulases (Köhlet al., 2019). Xylanases, 
cellulases, and chitinases are some of the 
enzymes secreted during colonisation and 
infection processes. As these enzymes or 
their degradation products maybe directly 
recognised by the host, they may induce 
a defensive response (Druzhinina et al., 

2011). Curtobacterium sp. XA15-35, 
demonstrated antifungal activity, which 
counters Sclerotinia sclerotium (W. Xu 
et al., 2019). This attribute of XA15-35 
is associated with significant phosphate 
solubilisation besides the production of 
several hydrolytic enzymes (chitinase and 
protease).

A previous study by Radjacommare et 
al. (2004) also documented mycelial growth 
inhibition of Rhizoctonia solani from 
induced resistance activity. Pseudomonas 
fluorescens apparently demonstrated an 
induced systemic resistance (ISR) to hinder 
the sheath blight pathogen by the latter, 
which increased the production of chitinase 
genes in rice. This example reflects various 
endophyte-derived compounds that are 
capable of inducing plant defence responses. 
However, due to the high complexity of 
hyperparasitism, the production of a single 
enzyme may not be a good competitor for 
biocontrol purposes. In addition, according 
to Karlsson et al. (2017), understanding 
the role of enzymes in biocontrol requires 
the perception of the entire cascade of 
events, including the signal regulation of 
its various secondary metabolites. The 
beneficial microorganisms were found to 
be able to incorporate ISR to enhance the 
protective ability of the whole plant to 
multiple infections (Conrath et al., 2015). 
For instance, the degree of stunting, leaf 
malformation, and wilting induced by 
Xylella fastidiosa in Catharanthus roseus 
(Lacava et al., 2007) can be abated by 
Curtobacterium flaccumfaciens.
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Application of PGPMs in Biocontrol 
Activity

In the agricultural sector, microorganisms 
with several benefits can be valuable and 
are significant to the bioeconomy in order to 
fight plant disease. Thus, biocontrol is one 
of the tools used to manage plant pathogens 
with low environmental effects (Larran et 
al., 2016). PGPMs are considered a good 
biocontrol strategy and play important roles 
in plant growth-promoting (W. Xu et al., 
2019). According to Agrillo et al. (2019), 
biocontrol agents can be obtained from 
the extraction and purification of specific 
compounds isolated from PGPMs. PGPMs 
have been shown to have several secondary 
metabolites with antimicrobial properties, 
resulting in significant antagonistic activity 
against phytopathogenic fungi (W. Xu et 
al., 2019). Kim et al. (2018) also indicated 
that biological metabolites produced from 
bacteria should generally be considered 
bio-pesticides. Table 1 shows a few studies 
establishing pathogen biocontrol using 
PGPMs and their mechanisms against plant 
pathogens.

Rhizospheres have been identified 
as plant growth and health enhancers by 
supporting mechanisms such as enhanced 
soil nutrient uptake, phytohormone 
production and release, and increased plant 
resistance to environmental stress, which 
have adverse effects on soil phytopathogens, 
including fungi, viruses, and nematodes 
(Prashar et al., 2013). Research done by 
Abro et al. (2019) also found three promising 
endophytic fungi, Penicillium sp., Hypocrea 
sp., and Lasiodiplodia theobromae, which 

pose as biocontrol agents against wilting 
of cucumber crops caused by Fusarium 
oxysporum f. sp. cucumerinum. These three 
endophytes effectively reduced the severity 
of cucumber Fusarium wilt and enhanced 
cucumber growth (Abro et al., 2019). 
Murali and Amruthesh (2015) showed 
that there is a major disease protection 
of 62% and 58% under greenhouse and 
field conditions, respectively, in plants 
pretreated with a conidial suspension of 
Penicillium oxalicum, which is a PGPF 
against downy mildew disease. Previous 
research has also reported PGPBs such as 
Pseudomonas (Wicaksono et al., 2018), 
Cellulosimicrobium, and Bacillus (Zouari 
et al., 2016), showing potential against 
phytopathogenic fungi and/or insects.

CONCLUSION AND FUTURE 
RECOMMENDATIONS

In this study, plant growth-promoting 
microorganisms (PGPMs) have shown 
inherent potential as biocontrol agents 
against plant pathogens. A great deal of 
work has already been done in this area. 
Nevertheless, ongoing efforts are still needed 
to extend the reliability of these biocontrol 
products. This is important for the realisation 
of commercialisation in biocontrol agents 
because of the high quality and low costs 
gap between chemical and biological control 
tools. The complexity of microbial events 
and their interactions with the environment 
can be further understood with better 
screening assays and multi-omics analyses. 
Such information will pave the way for a 
generation of markers for the effectiveness 
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of biocontrol agents. Furthermore, the use 
of such techniques will allow researchers to 
measure the influences of plant genotypes 
and the inherent microbial population on the 
ecology of a system, apart from suggesting 
a systematic method to discover novel 
microorganisms with desired traits.
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